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Estimating the Chances
of Large Earthquakes

by Radiocarbon Dating
and Statistical Modeling*
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Residents in earthquake-prone areas are concerned with the possibility that
an earthquake might occur and cause them loss of life or property. They seek
insurance to reduce the effects of this risk. Government officials are also con-
cerned, for they have the responsibilities of planning continuing services if there
is damage to critical facilities and for educating the public. Basic to these in-
surance premium calculations and government allocation of resources are esti-
mates of the chances of earthquakes and of the associated destruction.
Fortunately-large earthquakes are rare. Unfortunately, however, their rarity
has the statistical disadvantage of making it difficult to estimate their chances
of occurrence confidently. Several procedures have been developed to assess
seismic risk. This essay describes a cross-disciplinary approach that has the
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wonderful aspect of being based on data for earthquakes that occurred at a
location of interest when no one was there to record the event. In fact, nine
of the ten earthquakes employed in the study are prehistoric.

PALLETT CREEK

This story began with Stanford geologist Kerry Sich heading off ?nto the Califor-
nia desert just after his honeymoon, in the company of his wife and brother.
Professor Sieh’s destination was a small piece of ground straddling the San
Andreas Fault about 55 kilometers northeast of Los Angeles (see Figure 1 for
the general location). A stream called Pallett Creek runs nearby. Until 1910 or
so this area was a swamp. Over the years, black peats were formed and perlodl?-
ally buried by sand and gravel borne by the creek’s floodwaters. Sieh and his
companions proceeded to dig trenches. They found disrupteq l‘ayers of peat,
wood fragments, charcoal, and even old animal burrows. Examining the trench
walls Sieh noted places where the layers were broken and inferred that thc?se
breaks occurred during prehistoric earthquakes. All of his professional train-

(

Figure 1 Map of California showing location of site on San Andreas'Fault where
specimens were collected for radiocarbon dating. PC indicates tbe' loca_tzon of Pallett
Creek, LA indicates Los Angeles, and UCB the University of California, Berkeley.
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ing and expertise as a geologist helped him to decide which disruptions in the
layers might correspond to earthquakes. He selected specimens near each of
the breaks to date by radiocarbon techniques.

In the way of background, the most recent large earthquake that affected
the Pallett Creek area was in 1857. (A large earthquake is one of Richter mag-
nitude 7.5 or greater.) Also, the study of earthquakes at Pallett Creek is highly

informative concerning destructive events that might hit the greater Los Angeles
area.

RADIdCARBON ANALYSIS

After returning from Pallett Creek, Sich sent the specimens to Professor Minze
Stuiver at the Quaternary Isotope Laboratory at the University of Washington.
Professor Stuiver’s job was to provide an estimate of the date at which each
specimen was deposited (died). This work is done in two stages. In the first,
Stuiver uses a techinique called. radiocarbon dating. This gives him first ap-
proximations to the dates at which the specimens died. In the second stage,
he uses a calibration technique to improve the approximation. Statistical tech-
niques play important. roles in both stages.

At the first stage, Stuiver converts Sieh’s specimens to the ‘“‘purest carbon
dioxide in Seattle’’ and then measures their level of radioactivity. He wants to
find out how much of the radioisotope, “C (radiocarbon), is present in each
specimen. He follows a technique set down in 1945 by Professor William Libby
at the University of Chicago. Libby knew that living matter, such as a tree, con-
tains a near constant level of 4C during its lifetime. Once the tree dies, however,
the '4C decays into another element at a known rate. This is shown in Figure 2,
For example, the “C will be reduced to a half of what it was in 5,568 years
and to a fifth of what it was in about 13,000 years. (In Figure 2, the 5,568 is
indicated by the solid vertical line. It is referred to as the baif-life.) So, as Libby
saw, it will be possible to find the date of a specimen’s death if it is known
how much “C it had originally and how much it has now. The original quan-
tity is impossible to get directly. So at this first stage, Stuiver makes the assump-
tion that the amount of C in living material has remained about the samé across
time and uses a standard material (oxalic acid) to get an estimate of how much
radiocarbon there would have been in each of Sieh’s specimens at the time of
its death. This gives him a proportion. If, for example, the proportion is 0.9,
then, using the curve of Figure 2, the time elapséd is approximately 850 years
and the corresponding date at which the specimen died is 1987 — 850 = 1137.
The year 1137 would be Stuiver’s first approximation to the date of the speci-
men’s death. It is referred to as the radiocarbon date of the specimen. It should
be mentioned that a variety of correctioris, for example, for background radia-
tion, are also applied in the course of determining a specimen’s radioactivity
and radiocarbon date.
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Figure 2 Plot sbowz‘ng the exponential decay of _:adioactivity and‘ balf-life of
radiocarbon. The solid vertical line indicates years pdssed corresp'ondl'ng to ; pr;o—
portion of 0.5. It provides the balf-life of 5, §68 years. The dotted verjtzcal line indicates
years passed corresponding to a proportion of 0.9.

CALIBRATION

Professor Stuiver and others have carried out a variety of radiocgrbon fjgtlngs
on specimens (tree rings) of known date. They havcfour.ld th.at‘ ‘.“C activity :jn
the atmostphere has not remained precisely constant, as Pnbby initially assumed,
but has fluctuated to an extent. Knowing both the radiocarbon and o?alem.jar
dates of these specimens, the researchers were able to prepare a calzbmtzoz
curve relating the two. At the sé¢cond stage of his work, Stuiver emPloys suc
a curve to determine an imiproved estimate of the ca!endar, date of a given sp;cn-
men. Figure 3 presents this calibration curve (see Stuiver and Pearson, 1986)1; or
a given radiocarbon date one can read off a calendar date. Suppose one ;IS a
specimen with a radiocarbon date of A.D. 1100, then thF cor‘respf)ndmg calen-
dar date is about A.D. 1200 (see the horizontal and vertical lines in the figure).
The calibration operation has been crucial, changing the date by about 100 years.

In his work Stuiver has to deal with measurement err9rs and to compute
estimates of unknown quantities. He also wishes to prov1d§ measures of the
uncertainties of his estimates. Statistics has a variety of techniques for address-
ing these problems. '
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Figure 3 Calibration curve indicating radiocarbon years and corresponding calen-
dar years. The vertical solid line neai 1200 8ives the calendar year corresponding
o a radiocarbon year of 1100,

THE STATISTICAL APPROACH

Foremost among the concepts fundamental to the statistical approach to scien-
tific problems is the notion of distribution. Supposing that it makes sense to
talk of probabilities attached to a circumstance of interest, then the distribu-
tion of a2 numerically valued quantity is the function giving the probability that
the quantity takes on a value not greater than a specified number. Figure 4 gives
two examples of cumulative distribution functions, a normal and 2 Weibull.
The family of normal frequency distributions have a specific shape—they are
symmetrical and have one hump—and they are useful at describing frequency
distributions whose observations may represent the sum of many independent
contributions such as stature, or scores on achievement tests. The Weibull
distributions are a class that have long right-hand tails and have been especially
useful for describing the results of life tests, such as time to failure of light bulbs
and fatigue tests. More generally, Weibulls can describe the distribution of the
time until the next event in a series happens. Figure 4 gives as examples
cumulative distributions, and the hump of the normal family is represented by
the steep slope near the mean. The long tail of the Weibull is represented by
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Figure 4 Examples of distribution functions for two particular distributions (a nor-
mal and a Weibull). The curve gives the probability of not exceeding a specified value
along the x-axis. In the top graph, the probability corresponding to not exceeding 900
is indicated. In the lower graph, the probability of not exceeding 130 is indicated.

the slow rise at the right of the figure. From the top graph of Figure 4 one may
read that the probability is about .70 of a value, (in this case a date) occurring
that is no greater than 900. From the bottom graph, one reads .42 for the
probability of a result (in this casg-d time interval) no greater than 130. Distribu-
tions are employed in the construction of statistical models (manipulable prob-
abilistic descriptions of situations of concern). With a statistical model, one
can address a host of scientific questions in a formal manner. _
Distributions generally come in families, individual members of which are
labeled by parameters. The top graph of Figure 4 illustrates a case of the nor-
mal family with parameters 891.7 and 15.7, while the lower illustrates a case
of the Weibull with parameters 2.55 and 164.4. (These particular parameter
values are used in calculations with the data later in this essay.) For the normal
distribution the first parameter whose value is 891.7 is the mean or average
value, and the second parameter is the standard deviation—a measure of spread.
(See the essay by Zabell for more detail about the standard deviation.) In some
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The above statistical concepts* play a role in the analyses described in
this essay.

ESTIMATED DATES

Stuiver found one of Sieh’s recent specimens to have a radiocarbon date of 891.7,
with a standard error of 15.7. Figure 5 provides the likelihood function for the
calendar date of deposition of this specimen. In computing this likelihood func-
tion the statistician takes into account that both the specimen’s radiocarbon
date estimate and the calibration curve are subject to measurement errors with
approximate normal distributions. The radiocarbon date error depends, in part,
on over how long a time period the specimen’s level of radioactivity was
measured in the laboratory. The calibration curve error depends, in part, on
how many known-age items were included in its construction. The date for
which the likelihood is largest here is A.D. 986 (see Figure 5). This particular
specimen was selected by Sieh to provide a date between the earthquakes that
he has labeled I and N in Table 1. By using an interval of twice the standard
error on each side of the estimate, we get approximately 95% confidence
intervals as shown in Table 1. The 95% confidence interval for the speci-
men’s calendar date runs from A.D. 965 to A.D. 1011. This interval corresponds
to the points where the dotted line in the figure intersects the curve in Figure 5.
We have no confidence interval for the first entry, 1857, because it is part of
recorded history. ey,

In practice there is sometimes an added difficulty. The calibration curve is
not steadily increasing as a function of the calendar date. Wiggles appear in
it due to things like solar magnetic field disturbances, changes in the Earth’s
magnetic field, and the measurement error already referred to. The wiggles mean
that sometimes one cannot associate a given radiocarbon date with a unique
calendar era. To sort out the eras, one needs supplementary information.

INTER-EVENT TIMES

Sieh (1984) lists the following estimated calendar dates for 10 earthquakes at
Pallett Creek: 1857, 1720, 155041350, 1080, 1015, 935, 845, 735, and 590.
(These are given in Table 1, as well as twice their associated standard errors.)
Only one of these dates was available historically, namely, 1857. The other dates
were derived by Sieh by interpolation between the estimated dates of the various
specimens he selected in the course of his excavations.

At this stage of his study, Sieh turned to a statistician for assistance in infer-
ring the probabilities of future earthquakes. (The radiocarbon daters had turned
to statisticians earlier in the development of their estimation procedures.) In

*See Nelson (1982) for an explanation of the ideas of probability plotting, the normal and Weibull
distributions, and related statistical concepts. '
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Table 1 Estimated dates and
twice their standard errors for
historical earthquakes at
Pallett Creek. [The event labels
and values are those of Sieh

(1984).]
Event Date, A.D.
Z 1857
X 1720 + 50
M 1550 + 70
T 1350 + 50
R 1080 + 65
N 1015 + 100
I 935 + 85
F 845 + 75 -
D 735 + 60
C 590 + 55

Source: Sieh (1984).

tl}c statistical approach to the problem of probability estimation, one seeks a
distribution function for the series of times between the events. From the
smallest to largest these times are: 65, 80, 90, 110, 137, 145, 170, 200, and 270
years, with 131 years now passed in 1988 since the 1857 event. The st;ltistician
Sets out to determine a statistical model for these values.

The Weibull family has often been found applicable for the lifetimes of items
subject to destruction and for other related phenomena. A Weibuli probability
plot was prepared for Sieh’s data. It is given in Figure 6. The vertical bars cor-
Fespond to the dating errors of the corresponding interevent times. If the Weibull
is adequate for describing the distribution of times between earthquakes, then
the points plotted should fall near a straight line. For reference, a straigt;t line
has been included in the figure. The Weibull assumption appears reasonable here.

RISK ESTIMATES

Many people are interested in such questions as: What is the probability of a
large earthquake in the Los Angeles area in the next 5 years? In the next 10
years, and so on? These probabilities (risks) may be estimated once one has
a di.stributional form for the times between earthquakes. Figure 7 provides
prchminary_cstimatcs of risk probabilities, employing the Weibull distribution
referred to'and using the data of Table 1. From the figure one sees, for example
that the probability of a large earthquake in the next 30 years given that thé ’
last earthquake was 131 years ago may be estimated by .32 (that is, there is a
3.2%.chancc of one occurring). The dashed lines in the figure provide an in-
dication of the uncertainty in the fitted probability values. They correspond
to a ?5% confidence interval. By following the horizontal lines of the figure
one is led to a lower limit of .18 and an upper limit of .50 for the probability
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of an earthquake occurring in the next 30 years. This result may be used by
insurers, engineers, and planners in their work.

INSURANCE PREMIUMS

Suppose one wishes to set aside funds to cover the cost of rebuilding a facil-
ity that might become damaged in an earthquake in the coming year. The
fair premium to cover the rebuilding, were an earthquake to take place, per
thousand dollars of cost, is given by a thousand times the probability of an
earthquake occurring in the coming yedr. Using the fitted Weibull, the esti-
mated probability of an earthquake in the coming year is .0108 and the pre-
mium works out to be $10.80. (Of course, insurance companies actually “‘load”’
their premiums by adding amounts to cover costs, to allow profits, and to
protect themselves against extreme catastrophes, so they would charge more
than $10.80.)

CONTRIBUTIONS OF STATISTICS TO THIS PROBLEM

The desired end product of a seismic risk study is a probability. So statistics
is bound to enter, as statistical distributions are basic to the estimation of prob-
abilities. In the study just described, the tool of radiocarbon dating was crucial.
Researchers in that field have long recognized the importance of good statistical
techniques. As H. A. Polach (1976) has said, ‘*The application of sound statistical
methods has become a radiocarbon dater’s ‘bread and butter’ ‘

It is also worth quoting Harold Jeffreys (1967), one of the most important
seismologists and statisticians of this century. He has said that “An estimate
without a standard error is practically meaningless.”” This refers to the state-
ment of conclusions. Providing standard errors is one 100l for this, confidence
intervals are another. These are both central concepts of statistics. Remember
that the 95% confidence interval for the probability of a large earthquake at
Pallett Creek in the next 30 years runs from .18 to .50.

CONCLUSION

Science proceeds by building on itself. In the work described, specimens of
known age (tree rings) are employed to construct a calibration curve that is
employed in dating specimens of unknown age. Science uses statistical con-
cepts to address problems of estimating unknowns, to validate assumptions,
and to quantify uncertainties in the inferences miade.
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PROBLEMS

1. Use the curve of Figure 2 to read off the years elapsed for the radiation to
drop to a quarter of its initial value. '

2. Use the curve of Figure 3 to read off the calendar year corresponding to
a radiocarbon year of 500.

3. Use the curve of Figure 3 to find a radiocarbon year that corresponds to
several calendar years rather than to a unique year. Comment on this
phenomenon.

4. There is a bump around the year A.D. 900 in the curve of Figure 5. What
do you think its source is? (Hint: Consider Figure 3.)

5. What is the approximate fair insurance premium to pay to cover $50,000
worth of damage due to an earthquake that might take place in the next
20 years? (Hint: Read a probability estimate from Figure 7.)

6. Evaluate the times between successive events for the earthquakes listed in
Table 1. Does there seem to be any structure in the sequence of values?
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